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Stability of a Fluid Surface in a Microgravity Environment
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We introduce a stochastic model to analyze in quantitative detail the effect of the high-frequency components
of the residual accelerations onboard spacecraft (often called g jitter) on the motion of a fluid surface. The resid-
ual acceleration field is modeled as a narrow-band noise characterized by three independent parameters: its
intensity G a dominant frequency , and a characteristic spectral width t-1. The white noise limit corresponds
to Q1 — 0, with G2 finite, and the limit of a periodic g jitter (or deterministic limit) can be recovered for Q71— o,
G? finite. Analysis of the linear response of a fluid surface subjected to a fluctuating gravitational field leads to
the stochastic Mathieu equation driven by both additive and multiplicative noise. We discuss the stability of the
solutions of this linear equation in the two limits of white noise and deterministic forcing, and in the general case
of narrow-band noise. The results are then applied to typical microgravity conditions.

Introduction

STOCHASTIC model is introduced to describe the high-

frequency components of the residual accelerations onboard
spacecraft (often called g jitter). The model is incorporated into the
equations governing fluid motion, and the stability of a surface of
discontinuity between two fluids of different density is analyzed.
The linear stability of this surface is governed by the stochastic
Mathieu equation, driven by both multiplicative and additive
noise. We study the range of parameters in which the solutions of
the stochastic Mathieu equation are stable and apply the results to
a water-air surface in typical microgravity conditions. We find that
the component of g jitter normal to the surface at rest couples non-
linearly to the surface displacement and can lead to parametric in-
stability. On the other hand, the two parallel components appear
additively, and we show that they do not modify the linear stability
boundaries associated with the normal component.

A certain amount of attention has been paid recently to model-
ing g jitter as a periodic function of time,'~ but little attention has
been paid to the more realistic case in which the effective accelera-
tion spectrum contains a band of frequency components and is ran-
dom in nature. Early work in this direction by Antar* considered
the stability of the Rayleigh-Bénard configuration under a random
gravitational field with a uniform frequency spectrum (white
noise). Later, Fichtl and Holland’ used a stochastic description to
study the distribution of impulses that would exceed a prescribed
threshold.

We introduce a general model for g jitter, also based on a sto-
chastic description,® with a spectrum that is similar to residual ac-
celeration spectra measured in space missions. The model, which
we call narrow-band noise, is characterized by three parameters:
the mean intensity of the fluctuations G; their characteristic angu-
lar frequency €; and the characteristic width of the spectrum
(peaked at Q) T! (Ref. 7). In the limit Qt— 0, with D =G finite,
narrow-band noise reduces to white noise of intensity D, whereas
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for QT—>e0 and G2 finite, monochromatic noise of intensity G2 is
recovered. Individual realizations of monochromatic noise are si-
nusoidal functions with frequency Q but with random amplitudes
and phases. From published acceleration spectra measured during
space missions,> one can infer that characteristic frequencies of g
jitter are in the range 1-20 Hz, hence Q~2rx  (1-20)s™!. Charac-
teristic widths of the spectral density are 5-10 Hz, or t~0.1-0.2 s.
Therefore, Q1 ~1-25, which is an intermediate case between the
white noise limit and the deterministic limit of periodic forcing.

The motivation for our work is that high-frequency components
of the residual acceleration field will affect fluid flow primarily in
regions where large gradients of density exist. The case of a sur-
face of discontinuity studied in this paper is a prototypical example
and is used to explore in detail the coupling between a time-depen-
dent acceleration and fluid motion due to density gradients. Be-
cause our analysis leads to the stochastic Mathieu equation, our re-
sults are applicable to a variety of situations, including parametri-
cally excited surface waves® and convective instabilities in sys-
tems under a time-dependent gravitational field.”

Our results show that linear instability in the stochastic case is
mainly due to subharmonic parametric resonance. There is, how-
ever, a complex interplay between the linear dispersion relation of
the surface and the power spectrum of the external acceleration
field that results in two main differences with respect to the classi-
cal deterministic case of periodic forcing. First, stochastic forcing
excites a range of frequencies. Parametric resonance can occur for
modes which would not be resonant with the exciting frequency in
a deterministic model. Second, stability is typically enhanced
when the spectral width of a stochastic forcing is increased.

Equation Governing Interface Displacements

Consider two incompressible, immiscible fluids in a finite con-
tainer, initially separated by a planar surface at z = 0. We assume
that fluid 1 of density p; and shear viscosity l1; occupies the region
—d < z <0, and fluid 2 of density p, and shear viscosity U, occu-
pies the region 0 < z < 4. We summarize here the conditions under
which the fluid equations can be reduced to a closed equation for
the interface displacement alone when the system is subjected to
arbitrary, time-dependent accelerations g(f) = [g.(?), &,(®), &0
— gol- Here, g, is a static component of the acceleration directed
along the z axis. As discussed in Ref. 7, an equation for the inter-
face displacement alone only exists when the time scales associat-
ed with viscous dissipation are much longer than typical time
scales of interface motion (i.e., in the underdamped limit). In this
regime, fluid flow can be assumed to be potential except in thin
boundary layers near the container walls and the fluid interface.
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We will neglect in what follows any capillary effects at the contact
between the interface and the container wall.

Following the formulation of Miles,!® we expand both the inter-
face displacement A(x,y, f) away from its reference position and the
velocity potential 0,(x,y,z,?) (i = 1,2 denotes the two fluids) as

h(xy,0) = Y h, (DY, (x)Y) )

0,20 = Yo, OV, (61 Z,(2) @

where ,(x,y) are the eigenfunctions of (V2 + k2)W,(x,y) = 0 with
boundary condition 7 - Vy, = 0 at the container’s wall. The equa-
tion for y, follows from Laplace’s equation for the velocity poten-
tials ¢;, when their z dependences are solved for each eigenmode as
Z,, = cosh k,(z + d)/cosh k,d and Z,, = cosh k,(z — d)/cosh k,d.
Here, d is the depth of the fluid layer, which is assumed to be equal
in both fluids for simplicity. The eigenfunctions are orthogonal
and normalized, [y, v, dxdy = §§,,, with S the cross-sectional
area of the container. If cubic and higher orders terms in %, and £,
are neglected, the Lagrangian function for the generalized coordi-
nates A,(f) reads

2

h, 1
L=§(p1+p2)5(§ _EA[gO_gz(t)]hZ

n

2,2
+AQ (Hh ———"— 3)
2(p,+py) ]

where k, = k, tanh(k,d), A = (p;—p)/(p1+p,), T is the interfacial
tension, and

1
0.0 = [ [le.x +5,0n1v, dx @

Weak viscous dissipation may now be approximately incorpo-
rated by calculating the rate of energy dissipation 9 of the fluid
system. By introducing the dissipation function 5 = —9/2, we have
the following equation governing the motion of the viscous fluid,

i(gﬂ)__aiJra_":o 5)
dt\9h,/ Oh, oh,

As discussed in the Appendix, for a large enough container the dis-
sipation function ¥ can be approximately written as

1 Y .
~=S(p,+p) Y —h, ©)
2 = kK,
then Eq. (5) reads
d*h, dn,
— +v,— + [0,~Akg, ()] h, = AL,Q () Y
dt2 dt

with
(P, = P,) 8oky, + TKAK,
0)2 _ 1 2 0 (8)
P, +p,

The damping coefficient v, contains a contribution from bulk dissi-
pation 4[(1, +1,)/(p,+p,)]1 k2, and a contribution from dissipation
at the interface boundary layer which is, in a order of magnitude
estimation, proportional to Vv , with v the average kinematic vis-
cosity of the two fluids. For the special case of a single fluid, the
dissipation in the free surface boundary layer can be neglected in
the underdamped limit.” Viscous dissipation in the boundary layer

near the container wall cannot be written in the form of Eq. (6). In
this paper we consider only a large enough container such that dis-
sipation near container’s wall is small compared to other sources
of dissipation. See the Appendix for a quantitative estimation.

Equation (7) is our starting point for the stochastic analysis pre-
sented in the next section. The salient feature of Eq. (7) is that the
contribution of g,(#) is nonlinear or multiplicative [g,(Hh, (D],
whereas the contributions from g,(¢) and g,(?) are additive. It can
also be shown that, contrary to the multiplicative forcing, the
strength of the additive forcing is size dependent and vanishes in
the limit of an infinite cross-sectional area. For instance, in a rect-
angular container L, X L,,Eq. (4) with the explicit form of the cor-
responding eigenfunctions can be written as

LD ~11g, () [(-1)/-11g,(n
0,0 = 7 8+ - 228,

ij x y
)]

In the limit of an infinite container L,, L, — o0, Q, (f) —0 for any
fixed wave number £;;. Recall that we consider a large container
to neglect the viscous dissipation near the container wall. There-
fore, the analysis on the effect of additive forcing Q, to the stabili-
ty of a fluid interface is relevant for the case of a large but finite
container.

Oscillator Driven by Multiplicative and
Additive Noise

We have seen that under certain conditions, each normal mode
of the interface displacement satisfies a closed equation that is
equivalent to that of a linear oscillator subject to both multiplica-
tive and additive forcing. The intensity of the additive forcing de-
pends on system size but not on the actual interface displacement
and vanishes in the limit of an infinite system size. The intensity of
the multiplicative term is independent of system size but depends
on the actual displacement of the interface and vanishes in the ref-
erence state of a planar interface at z = 0.

We rewrite Eq. (7) as

>  dx
——+y—+ox+E@x = (@) (10)
de dr

where x(f) corresponds to any of the eigenmodes k, and &(f) and
£(?) are two stochastic forces. In this section we study the statisti-
cal properties of the dynamical variable x(¢). We characterize the
stability of the solutions in terms of the stability of the statistical
moments of x(f) as a function of the parameters of the system (y
and ;) and of the noise. We restrict our study here to the second-
order moments, (x2), {xx),and {¥2), that are directly proportion-
al to the energy of the oscillations.

Uncorrelated White Noises

If the two stochastic forces in Eq. (10) are white and un-
correlated, (€ () E (1)) =2D8(t—1"), ()L (t') ) =2b(t—1"),
and (€ (1) § (¢') ) =0, the evolution equation for the second-order
moments is closed and linear. The so-called energetic instability
occurs when one of the three eigenvalues of the evolution matrix
for the second-order moments, say A,, has a positive real part, im-
plying an exponential growth of the second moments. This eigen-
value is known exactly!! and in the underdamped limity%/4 @} « 1
reads

A = -Y+D/0] (11

and is independent of the intensity of the additive noise €. The
white noise limit corresponds to the idealized situation in which
the spectrum of the stochastic force is constant. For more realistic
noise spectra, the evolution equations for the second-order mo-
ments are not closed in general, and to define a similar criterion of
instability, different truncation schemes have to be invoked.
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Deterministic Periodic Forcing

The opposite limit to white noise corresponds to a periodic forc-
ing of the form &(#) = &, cos Qr and {(r) = {, cos (Qt + ;). This
limit models a monochromatic g jitter of frequency Q with highly
correlated components. In this limit, the stability properties of
Eq. (10) can be determined as follows. In the absence of the addi-
tive term (o = 0), Eq. (10) reduces to the classical (damped)
Mathieu equation. For y = 0, the solutions are always stable and
periodic for small enough &, except at the so-called parametric
resonances that occur when @, = nQ/2, with n = 1,2, . . .. The
strongest resonance occurs at z = 1. For finite v, however, there is a
finite threshold for instability

€o/200)* -¥*2 0 1z

We argue that the regions of stability of the solutions of the
damped Mathieu equation do not depend on an additive periodic
forcing of the same period. This result follows from general theo-
rems of linear differential equations with periodic coefficients. Ac-
cording to Sec. 2.9 in Ref. 12, if the homogeneous part of Eq. (10)
does not have periodic solutions, and the inhomogeneous term is
itself periodic with the same period as the coefficients of the ho-
mogeneous part, then the particular solution of the full equation is
itself a periodic function. Therefore, the stability of the solutions
of the full equation remains unchanged after the addition of the in-
homogeneous terms, since instability will only occur if the homo-
geneous part already has a positive Floquet exponent. In our case,
the Floquet exponents of the homogeneous part o, o, (i.e., of the
damped Mathieu equation) are related to those of the undamped
case =0 by 0, = —Y/2 = G (see Sec. 4.3 in Ref. 12). Therefore,
the solutions of the homogeneous equation are not periodic except
when y = 26. But this is precisely the condition defining the stabil-
ity boundary of the damped Mathieu equation. Therefore, the sta-
bility boundaries of Eq. (10) for the deterministic case are also in-
sensitive to additive forcing.

Narrow-Band Noise

We now consider the generic case of a narrow-band noise. We
have shown that the additive contribution to Eq. (10) does not
modify the stability boundaries of the second-order moments in
the two limits of white noise and deterministic forcing. It is natural
to expect that in the intermediate case of narrow-band noise, which
interpolates between the two limits, the presence of an additive
noise, even if highly correlated to the multiplicative noise, will not
affect the stability boundaries either. Therefore, we restrict our sta-
bility study for narrow-band noise to the multiplicative contribu-
tion in Eq. (10). We define the spectrum of narrow-band noise as

1 1
+

1+ (Q+0)? 1+7(Q-0)°

Pe(@) = 5@ ) a3

This spectrum corresponds to a correlation function of the form

EDEE)) = € cos Qi-1) (14)

The limit Qt — 0, (¢”)t = D finite, corresponds to white noise of
intensity D. In the opposite limit, monochromatic noise or, equiva-
lently, a periodic forcing of amplitude &, is recovered with (€%) =
Eo/2.

We have investigated this case by perturbation theory and by
numerical means.” We have shown that the underlying mechanism
of instability in the stochastic case can also be understood as a
parametric instability. For a wide range of parameters of the noise,
it is shown in Ref. 7 that the eigenvalue describing the stability of
the second moments is well approximated by the expression

A ==7+ (1/0p) TP, (20, (15)

The dependence of the instability threshold on the value of the
power spectrum at precisely 2, reflects the fact that the underly-

‘ing mechanism for instability can still be understood as subhar-

monic parametric resonance.

Effect of Additive Noise

Additive noise in Eq. (10) simply modifies the spectrum of exci-
tations of the interface in the cases in which the interface is stable.
For A, > 0 the average energy of the oscillations diverges exponen-
tially in time, until nonlinearities saturate the growth. The presence
of additive noise is irrelevant. On the other hand, for A, < 0 addi-
tive noise determines a finite steady value for the second moments,
which would vanish if only multiplicative noise were present.

To discuss the influence of the additive term on the steady-state
fluctuations of the interface, let us first consider Eq. (10) without
multiplicative noise [E(?) = 0]. Equation (10) becomes linear, and
the effect of a noise comprising a band of frequency components
can be described as a linear superposition of the solution of the
oscillator forced by a single frequency component. The power
spectrum P(®) of the process x(#) is defined in the stationary re-
gime as'?

P(w) = ir e (Dx(t+s)) ds (16)
21d -

Equation (10) with &(¢) = 0 reads, in Fourier space,

-0’2 (0) +ioyR(e) +op () = § (o) an

By using Eq. (17) and the relations (Ref. 13) (% (®)%* (")) =
5(0 — 0)P(®) and (€ (®) {* (0') ) = dHw— ©")Pr(®), we have

P (w)
P(o) = (18)

2
[mg -0’ +y’e’

where P (w) is the power spectrum of the additive noise. Finally,
by using Eq. (16) the second moment {x*) can be written as {x*)
= ‘;P (®) dw. In the deterministic limit, we have Pe(m) = 1728,
8w —Q) and

1 ¢
D S a—— 19
2 (02 -Q71 " +y'Q

where the average is now understood over a period in the station-
ary regime. For white noise, we have PC (®) = ¢/n and

&% = e/ (2yo)) (20)

For narrow-band noise, the second moment can be expressed as

()C2> - (C )TJ.“’ d(O

—o0 2
2n [0)(2) -0’ +y%’

x( ! + ! ) 21
1+1:2(Q+c))2 1+12(Q—m)2

The excitation mechanism in all of these cases is an ordinary reso-
nance phenomenon in contrast with the parametric resonance of
the multiplicative case. In both the multiplicative and additive
cases, the variable x responds in time with the characteristic fre-
quency of the forcing Q, but in the purely additive case the oscilla-
tions have a finite amplitude that depends on Q and the character-
istic frequency of the oscillator ®,. Unlike the multiplicative case,
the amplitude of oscillation saturates due to the dissipative forces
even within the linear regime, and instability in the sense of expo-
nential growth of the second moments cannot occur.
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Higher Order Moments

In the general case in which both noise contributions are present
but the system is below threshold for parametric instability, the
distribution of fluctuations of the interface displacement cannot be
determined exactly for narrow-band noise. In the limit in which
both noises are white, it has been shown in Ref, 11 that the distri-
bution P(E) of the energy of the oscillations E = 1/2(i? + a)gxz) (in
the envelope approximation, which assumes that the time scale for
change of E is much larger than that of x,%) is given by

Y(og—D[ 1

P(E) = 2
(&) [1+(D/2em§)E]7“’3/D] @

2
20,¢
In the limit D — O (purely additive driving), Eq. (22) is replaced by

P(E) = Lexp (—yEle) 23)

Equations (22) and (23) clearly illustrate how the probability
distribution of amplitude fluctuations is qualitatively modified by
the presence of multiplicative noise. The dependence of P(E) on E
is a power law in the multiplicative case as opposed to the expo-
nential decay for the additive case. As a consequence, moments of
P(E) for the multiplicative case diverge beyond an order that de-
pends on D, v, and @, but not on the additive noise intensity €.
Hence, in the white noise limit, there are always moments of suffi-
ciently high order that are unstable. For narrow-band noise, the
stability boundaries of the various moments are also expected to
depend on the order of the moments considered. However, the sta-
bility boundaries for all of the various moments have to converge
to the stability diagram of the deterministic case, as one narrows
the width of the noise spectrum.

In summary, the stability of the solutions of Eq. (10) is deter-
mined solely by the multiplicative noise. Above threshold, the sec-
ond-order moments grow exponentially in time and additive noise
is irrelevant. If all of the interface modes are below threshold,
which modes are predominantly excited is determined by the dom-
inant frequencies of the additive noise. Higher order moments of
the interface displacement, however, may depend strongly on the
parameters of the multiplicative noise.

Application to Typical Microgravity Conditions

Although a precise characterization of residual accelerations in
a microgravity environment is under way, there is enough informa-
tion already available for our purposes. The spectral density of g
jitter determined during various space missions does have one or
several dominant frequencies, but it is also quite broad.

Contact with the results obtained for the stochastic oscillator can
be made in the case of a single fluid in an infinite container by re-
placing y = 4vg? @ =~ (I/p)¢, and &) = gg.(r), where q is the
wave number of the surface displacement away from planarity.
Now (E%) = ¢*(g2), with (g?) being proportional to the area be-
neath the spectral density of g jitter measured. From Fig. 9 in
Ref. 3 (which gives the power spectral density of a representative
time window aboard Spacelab 3), we estimate G = @) = 8 X
10“g. This is a very conservative estimate; considerably larger
values can be obtained from this and other published measure-
ments (see, e.g., Figs. 1 and 2 in Ref. 2). Note also that both y and
w, depend on the wave number g, as a result of this in the limit
@, — 0 the system is actually approaching the underdamped limit,
Y*4 @} = 4v?pI'1q « 1. The stability boundary given by Eq. (15)
can be explicitly written for this case as

G? op [ 14+2(Q1) 7 [1+4(0,/Q)?]
vQ? 452

Q{1+ (QD2[1+4(0,/Q)1}
Q1) [1-4 (0,/ Q) 2]

+ (24)
QT{1+ (QD)°[1+4(0,/Q)?1}

where G, is the critical value for instability. Equation (24) is plot-
ted in Fig. 1 for several representative values of Qt. The regions
above the curves correspond to regions of instability. The figure
also shows that there is a critical value of Qt at which the curves
change from monotonic to nonmonotonic behavior. The critical
value is (Q1), = 1.555. The minimum at ®,/Q = 0 is a zero of the
function and is independent of Q1. The second minimum corre-
sponds to the modes that resonate with the dominant frequen-cies
of the spectrum. For increasing Q7 this minimum approaches ®, =
/2 from the left. The corresponding value of G2/vQ® decreases,
as the spectrum becomes narrower around €2 favoring the reso-
nance.

For a given spectrum of g jitter, there is always a band of unsta-
ble modes at low frequencies (long wavelengths). As we increase
Qr this band becomes narrower, and the critical wavelength for
this low-frequency instability increases. For Qt > (Q7), a second
band of unstable modes approximately centered at @y/€2 = 0.5 may
appear depending on the level of g jitter. For the parameter ranges
estimated for typical g jitter, the low-frequency instability is likely
to be unobservable because it may correspond to wavelengths larg-
er than the natural long wavelength cutoff defined by the container
size. For instance, for fluid parameters appropriate to a water-air
interface, v = 0.01 cm?¥/s, " = 75.5 erg/cm?, and p = 1g/cm?; with
Q2n~12 Hz and G~1073g; the critical wavelength ranges
from ~ 15 cm to ~ 35 cm for Qt in the range from 1 to 25.

Given that the low-frequency band is likely not to be observ-
able, the absolute threshold for instability will typically be given
by the minimum of the curve from Eq. (24). In Fig. 2 we have plot-
ted the threshold given by Eq. (24) at @ = /2, as a function of Q
for several values of T [the minimum of Eq. (24) is not exactly at
® = Q/2, but the value of G*/vQ? at the exact minimum and at ® =
/2 do not differ significantly]. The dashed portion of the curve
corresponds to the region where there is no resonance minimum
[Qt < (Q7).]. For comparison purposes, we have also plotted the
deterministic case given by &(¢) = &, cos Q¢ [the threshold for in-
stability because of subharmonic resonance in this case is given in
Eq. (12)). To compare this case with the stochastic case, we have
EH =81, ie, ¢ (g2 = £2/2. The threshold for instability of
the resonant mode with @, = €2/2 in this case is given by

2 QS 1/3
(G, = VA2 ( pr ) 25)
4 .
3 -
- -
n | i
QZr— o
S T 1
1-— —
)_ -
. ]
8.0 0.2 0.4 0.6 l 0.8

Uo/n

Fig. 1 Stability boundaries for the second moments of free surface
away from planarity. The figure shows the dimensionless mean
squared fluctuations in gravitational acceleration vs the dimensionless
frequency of the surface modes. The intensity of the fluctuations in the
gravitational field is given by G2= {g,(H?). Different curves show the
stability boundaries for various values of the dimensionless correlation
time 1. We note that for QT > 1.555, the neutral stability curve has
one minimum at a finite value of (/<2 . Below that value, the only min-
imum is at 0y/Q = 0.
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d 10-3

1074 ¢
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Fig.2 Estimate of tolerable levels of g jitter for instability of a planar
water-air surface at room temperature. We show the normalized root
mean squared g jitter for instability as a function of the characteristic
frequency of the driving noise (g is the intensity of the gravitational
field on the Earth’s surface). Three different correlation times are
shown. The solid lines refer to those regions of Q1 for which the stabil-
ity curve has a minimum at finite frequencies (see Fig. 1). The dotted
lines represent the stability boundary at @y = €)/2, even though the
stability curve does not have a minimum at this point. The dashed line
is the stability curve for the damped Mathieu equation for the same
driving frequency.

For the range of frequen01es 5-20 Hz, we see that a g jitter level of
G = 1073gg lies below all of the curves, and therefore it does not
lead to instability.

Finally, Fig. 1 also shows that the interface becomes effectively
more stable as T is decreased, at constant G (i.e., at constant area of
the power spectrum). The forcing is less efficient in exciting the
resonance as it spreads into a wider band of frequencies, as op-
posed to being concentrated at the resonant frequency.

Appendix: Estimation of Various Contributions to
Viscous Dissipation

Here we discuss in some detail the estimation of the different
contributions to the total dissipation rate.

Viscous dissipation in the fluid system can be split into three
different contributions, namely, dissipation in the bulk, in the in-
terface boundary layer, and in the boundary layer near the contain-
er’s wall. Dissipation due to potential flow in the bulk can be writ-
ten as'4

2
9 25 21 I[—az¢‘ ]2 av —2p J.[ AL ] av
bulk = T4 buk = T4My <l
7 axiaxj A axiaxj

(AD)

where the integrals extend over the volume occupied by fluids 1
and 2, respectively. When the nonlinear contributions in the inter-
facial displacement are neglected, we find

2
Foure = (B +Hy) [252 k',l i (1)

n

Bk
+2 k; k/

mn

J' dzZ,, (2)Z,, (z):\ (A2)

where P, = [ dxdy VAV, - V). The matrix P,,, depends on
the geometry of the container and, in general, is neither zero nor
diagonal. Therefore, the equation for £,(f) is coupled in general to

all of the other modes 4,,(f). In the case of a rectangular container
of sides L and L,, the eigenfunctions v, are

v, (5y) = (28,9 (2-8) cos—cos’ Y (A3)
: L L

= Oforall
» 18 expected to vanish in the limit

where i,j=0,1,2, ..., except i =j =0, and we have P,,,
m,n. For arbitrary geometry, P,
of large system size.

Dissipation in the viscous boundary layer near the container’s
wall can be estimated by assuming a constant gradient of velocity
in the boundary layer for each eigenmode. The thickness of the
boundary layer for mode 7 is §, = V2v/® , with o, the character-
istic angular frequency of nth mode. Then,

N T f
g)wall~— Py V1/2+p2 V2/2 Z 2/(, k’ mn mh
(Ad)
where

fmn = J.Sl dsv [‘umzlm (01-V [anln ()]

- jsz dSV¥,2,, (21 - VI¥,Z,,(2)]

S, and S,,, are the surfaces of the container wall in contact with
fluids 1 and 2, respectively. The matrix f,,, is not diagonal in gen-
eral and can be estimated to be of order ~ 2Lk, kn/(km + k) with
L the lateral size of the container. With this estimation the ratio of
bulk dissipation to the dissipation near the container’s wall is of
the order of ~ Lk v2v/®,. Therefore, for a given driving frequen-
cy range and the concomitant resonant modes k,, the dissipation
near the container’s wall is not important provided the system size
is large enough. For a water-air interface and a typical g jitter fre-
quency of ~ 10 Hz, bulk dissipation dominates for L > 5 cm.

We now estimate dissipation in the boundary layer at the fluid
interface between two fluids. Again, we assume a constant gradi-
ent of velocity inside the boundary layer for each eigenmode and
equal to 19, (WV(W,Z,,) — 2,0V, Z,)1/5,, with §, = N2v/® .
Here v and u are the average kinematic and dynamic viscosities of
the two fluids. Then we find

- —4Suz

2v k'2 K (A9

This contribution dominates over bulk dissipation, even in the un-
derdamped limit and for a large container. The frequency depen-
dence of the resulting damping coefficient implies that a closed
equation for h,(f) cannot be obtained in the general case of a time-
dependent gravitational field. If, on the other hand, the gravitation-
al field is constant, Eq. (7) is approximately valid and contains a
damping coefficient that depends on the frequency of the mode
considered. Finally, in the case of the free surface of a fluid (p, =
0, W, = 0), the dissipation in the free surface boundary layer can be
neglected in the underdamped limit, as discussed in Ref. 7.
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